Reactions of Diazirines with Aluminum Chloride: Lewis Acid-Mediated Carbene Generation and Friedel-Crafts Reactions

Robert A. Moss,* Jean-Marie Fedé, and Shunqi Yan
Department of Chemistry, Rutgers The State University of New Jersey New Brunswick, New Jersey 08903
Received June 19, 2000
Revised Manuscript Received August 23, 2000

3-Substituted diazirinium ions (1) are possible intermediates in the Graham (hypochlorite) oxidation of amidines to 3-chloro-3-substituted diazirines (2). ${ }^{1,2}$ Despite their superficial resemblance to the aromatic cyclopropenyl cations, however, computational studies of the stability of $\mathbf{1}$ are equivocal, ${ }^{3}$ and the experimental evidence is not encouraging. ${ }^{2,4}$ Thus, treatment of $2(\mathrm{R}=\mathrm{MeO})$, or the corresponding bromide, with $\mathrm{AgNO}_{3}, \mathrm{AlBr}_{3}, \mathrm{SbF}_{5}, \mathrm{AlCl}_{3}$, $\mathrm{AgF}, \mathrm{H}_{2} \mathrm{SO}_{4}$, or $\mathrm{FSO}_{3} \mathrm{H}$ failed to provide spectroscopic or chemical evidence for $1 .{ }^{2}$ Related failures were reported for diazirine 3 , ${ }^{4 \mathrm{~b}, \mathrm{c}}$ while the "diazirine exchange" reactions ${ }^{5}$ of, e.g., $\mathbf{2}$ and $\mathbf{3}$, initially attributed to the intermediacy of $\mathbf{1},{ }^{6}$ have been reinterpreted as $\mathrm{S}_{\mathrm{N}} 2^{\prime 4 \mathrm{c}-\mathrm{e}, 7}$ or $\mathrm{S}_{\mathrm{RN}} 1^{1 \mathrm{c}, 8,9}$ reactions.

1

2

3

Here, we describe the chemical consequences of reacting various diazirines with AlCl_{3} in benzene. The resulting FriedelCrafts reactions provide new insights into the decomposition pathways available to these protean molecules.

Reactions of alkoxychlorodiazirines (4) ${ }^{10}$ with $\sim 30 \%$ excess AlCl_{3} in dry benzene ($25{ }^{\circ} \mathrm{C}$, dark, $20-30 \mathrm{~min}$) afforded alkylbenzenes (5) in $>95 \%$ purity; eq 1 . The R groups of 4

included isopropyl, cyclopentyl, cyclohexyl, benzyl, neopentyl, and n-butyl. Rearrangements were observed in the latter two cases,
(1) Graham, W. H. J. Am. Chem. Soc. 1965, 87, 4396.
(2) Moss, R. A.; Wlostowska, J.; Guo, W.; Fedorynski, M.; Springer, J. P.; Hirshfield, J. M. J. Org. Chem. 1981, 46, 5048.
(3) (a) Hoffman, R. Tetrahedron 1966, 22, 539. (b) Pittman, C. U., Jr.; Kress, A.; Patterson, T. B.; Watson, P.; Kispert, L. D. J. Org. Chem. 1974, 39, 373. (c) Krogh-Jerspersen, K. Tetrahedron Lett. 1980, 21, 4553. (d) KroghJespersen, K.; Young, C. M.; Moss, R. A.; Wlostowski, M. Tetrahedron Lett. 1982, 23, 2339.
(4) (a) Padwa, A.; Eastman, D. J. Org. Chem. 1969, 34, 2728. (b) Creary, X.; Sky, A. F. J. Org. Chem. 1988, 53, 4637. (c) Creary, X. Acc. Chem. Res. 1992, 25, 31. (d) Dailey, W. P. Tetrahedron Lett. 1987, 28, 5801. (e) Bainbridge, K. E.; Dailey, W. P. Tetrahedron Lett. 1989, 20, 4901.
(5) Moss, R. A. In Chemistry of Diazirines; Liu, M. T. H., Ed.; CRC Press: Boca Raton, FL, 1987; Vol. I, p 99.
(6) Moss, R. A.; Terpinski, J.; Cox, D. P.; Denney, D. Z.; Krogh-Jespersen, K. As a diazirinium cation/anion pair. In J. Am. Chem. Soc. 1985, 107, 2743. Moss, R. A. Acc. Chem. Res. 1989, 22, 15.
(7) Alcaraz, G.; Baceiredo, A.; Nieger, M.; Bertrand, G. J. Am. Chem. Soc. 1994, 116, 2159.
(8) Creary, X. J. Org. Chem. 1993, 58, 7700. Creary, X.; Sky, A. F.; Phillips, G.; Alonso, D. E. J. Am. Chem. Soc. 1993, 115, 7584.
(9) Moss, R. A.; Xue, S.; Liu, W. J. Am. Chem. Soc. 1994, 116, 10821
(10) Diazirines 4 were produced from the appropriate isouronium salts, see ref 1, and: Moss, R. A.; Ge, C.-S.; Maksimovic, L. J. Am. Chem. Soc. 1996, 118, 9792. Moss, R. A.; Johnson, L. A.; Merrer, D. C.; Lee, G. E., Jr. J. Am. Chem. Soc. 1999, 121, 5940. For isouronium salts, see: Moss, R. A.; Kaczmarczyk, G. M.; Johnson, L. A. Synth. Commun. 2000, 30, 3233.

Figure 1. B3LYP/6-31G* potential energy profile for the AlCl_{3} conversion of $4(\mathrm{R}=i-\mathrm{Pr})$ to $i-\mathrm{PrOCCl}$. Calculations are for the gas phase with zero point energy and thermal corrections. Arabic numerals refer to energies ($\mathrm{kcal} / \mathrm{mol}$); italic numerals indicate bond lengths (\AA).
where the products were tert-amylbenzene or a 73:27 mixture of s-butylbenzene and n-butylbenzene, respectively. In the case of $\mathrm{R}=\mathrm{PhCH}_{2}$, the absolute yield of 5 was $\sim 40 \%$, based on $\mathbf{4}$; the balance of the material was nonvolatile. Products were identified by GC and GC-MS comparisons with authentic samples, and no reactions occurred in the absence of AlCl_{3} (UV, TLC, HPLC).

An obvious formulation of these reactions involves chloride abstraction from 4 by AlCl_{3}, yielding an unstable alkoxydiazirinium ion ($1, R=R O$), which fragments to $\mathrm{R}^{+}, \mathrm{CO}$, and N_{2}, with subsequent alkylation of benzene by R^{+}. However, B3LYP/ 6-31G* computational studies ${ }^{11}$ fail to locate a $\mathrm{AlCl}_{3} / \mathrm{Cl}$ abstraction transition state for $4(\mathrm{R}=i-\mathrm{Pr}$ or Me). Instead, a transition state proceeding from AlCl_{3} attack on a diazirine nitrogen atom is readily found. Figure 1 illustrates the ensuing molecular processes and energy relationships for 4 ($\mathrm{R}=i-\mathrm{Pr}$). As computed in the gas phase, N/Al interaction affords a diazirine/ AlCl_{3} complex with $13.7 \mathrm{kcal} / \mathrm{mol}$ stabilization. $\mathrm{C}-\mathrm{N}$ bond breaking then requires $\sim 14.0 \mathrm{kcal} / \mathrm{mol}$ of activation energy via TS1 (transition states exhibited 1 negative vibrational frequency), leading exothermally (net, $-4.0 \mathrm{kcal} / \mathrm{mol}$) to an AlCl_{3} complex of isopropyloxychlorodiazomethane, the linear isomer of 4. ${ }^{12}$ Loss of nitrogen from the latter via TS2 ($E_{\mathrm{a}}=6.6 \mathrm{kcal} / \mathrm{mol}$) then affords isopropyloxychlorocarbene with a net exothermicity of $\sim 6.5 \mathrm{kcal} / \mathrm{mol}$. A very similar sequence of steps is also computed to convert $4(\mathrm{R}=\mathrm{Me})$ to MeOCCl .

According to this scenario, the function of the AlCl_{3} is simply to catalyze the loss of nitrogen from 4, affording the alkoxychlorocarbene, ROCCl. When R provides a moderately stable R^{+}, ROCCl readily fragments to $\mathrm{R}^{+}, \mathrm{CO}$, and $\mathrm{Cl}^{-} .{ }^{13}$ Therefore, the

[^0]simplest overall mechanism envisions the alkylation of benzene by R^{+}derived from 4 via ROCCl. A more complicated variant includes AlCl_{3} assistance (at C or Cl) in the carbene fragmentation, but given the low activation energies ($<10 \mathrm{kcal} / \mathrm{mol}$ in vacuo) computed for the fragmentations of $4\left(\mathrm{R}=i-\mathrm{Pr}\right.$ or $\left.\mathrm{PhCH}_{2}\right),{ }^{13 \mathrm{~b}}$ AlCl_{3} assistance is probably not required. Note that the possible formation of RCl or alkenes from ROCCl is moot in the present instance; controls show that these products simply alkylate benzene in the presence of AlCl_{3}.

When 2 or $\mathbf{4}$ afford RCCl or ROCCl that cannot readily fragment to $\mathrm{R}^{+}, \mathrm{AlCl}_{3}$-catalyzed decompositions follow a very different course. Thus, $2(\mathrm{R}=\mathrm{Ph}$ or p-tolyl) or $4(\mathrm{R}=\mathrm{Me}$ or $\mathrm{Ph})^{14}$ with AlCl_{3} in benzene yield triphenylmethane in $>90 \%$ purity. ${ }^{15,16}$ The origin of the methine proton in $\mathrm{Ph}_{3} \mathrm{CH}$ is the benzene substrate; reactions in $\mathrm{C}_{6} \mathrm{D}_{6}$ give $\left(\mathrm{C}_{6} \mathrm{D}_{5}\right)_{3} \mathrm{CD}$. The AlCl_{3} catalyzes phenyl exchange with solvent $\mathrm{C}_{6} \mathrm{D}_{6}$, but the methine proton does not exchange, ${ }^{17}$ it is irreversibly derived from $\mathrm{C}_{6} \mathrm{D}_{6}$.

We formulate these reactions as shown in Scheme 1 (illustrated with 2, $\mathrm{R}=\mathrm{Ph}$). Reaction of AlCl_{3} with diazirine 2 generates

Scheme 1

the carbene (here PhCCl) by the N -attack mechanism described above. Next, the carbene reacts with AlCl_{3} to give the aluminocarbocation 6, ${ }^{18}$ which alkylates benzene via the Wheland intermediate, 7. Three likely continuations include the following: (a) loss of HCl from 7 affording diphenylaluminocarbocation 8, which alkylates benzene to give $\mathrm{Ph}_{3} \mathrm{CH}$; (b) loss of HAlCl_{4} from 7 to give diphenylcarbene (9) which, upon capture by AlCl_{3}, also yields 8, and thence $\mathrm{Ph}_{3} \mathrm{CH}$; or (c) loss of AlCl_{3} from 7, (effectively) coupled with a proton shift, to give benzhydryl

[^1]chloride (10). The latter then alkylates benzene in a classic Friedel-Crafts process, affording $\mathrm{Ph}_{3} \mathrm{CH} .{ }^{19}$

The N -attack mechanism for AlCl_{3} conversion of a diazirine into a carbene (Figure 1) implies that a chlorodiazirine is not required; any diazirine should serve. Indeed, methoxyphenyldiazirine $(\mathbf{1 1})^{20}$ with AlCl_{3} in benzene affords triphenylmethane (96%), while phenyldiazirine (12) ${ }^{21}$ leads to diphenylmethane $\left(\mathrm{Ph}_{2} \mathrm{CH}_{2}, 96 \%\right)$. We can rationalize these reactions according to Scheme 1, noting (for 11) that MeO plays an equivalent role to Cl in $\mathbf{2},{ }^{19}$ and also that one fewer benzene alkylation is possible when starting with 12, so that $\mathrm{Ph}_{2} \mathrm{CH}_{2}$ rather than $\mathrm{Ph}_{3} \mathrm{CH}$ becomes the sequence terminus. Moreover, in accord with these ideas are the findings that, with $\mathrm{C}_{6} \mathrm{D}_{6}$ as substrate, $\mathbf{1 1}$ gives $\left(\mathrm{C}_{6} \mathrm{D}_{5}\right)_{3} \mathrm{CD}$, but 12 affords $\left(\mathrm{C}_{6} \mathrm{D}_{5}\right)_{2} \mathrm{CHD}$.

11

12
$\mathrm{PhCH}=\mathrm{N}_{2}$
13
$\mathrm{Ph}_{2} \mathrm{C}=\mathrm{N}_{2}$

14
Irradiation of $\mathbf{1 2}$ in benzene gives a $\sim 5 / 95$ mixture of diphenylmethane (PhCH insertion) and phenylcycloheptatriene (PhCH addition). Treatment of the product mixture with $\mathrm{AlCl}_{3} /$ benzene yields $\sim 27 \%$ of $\mathrm{Ph}_{2} \mathrm{CH}_{2}$ and $\sim 73 \%$ of $\mathrm{Ph}_{3} \mathrm{CH}$, quite different from the 96% of $\mathrm{Ph}_{2} \mathrm{CH}_{2}$ obtained from the direct reaction of $\mathbf{1 2}$ with $\mathrm{AlCl}_{3} /$ benzene. The latter reaction proceeds via the aluminocarbocation derived from PhCH and AlCl_{3}, not via free PhCH .

Finally, we note that the AlCl_{3} diazirine to carbene conversion of Figure 1 transits an AlCl_{3} complex of the isomeric linear diazoalkane. Not surprisingly, therefore, phenyldiazomethane (13) ${ }^{22}$ or diphenyldiazomethane (14) ${ }^{23}$ yield $\mathrm{Ph}_{2} \mathrm{CH}_{2}{ }^{24}$ or $\mathrm{Ph}_{3} \mathrm{CH},{ }^{25}$ respectively, with $\mathrm{AlCl}_{3} /$ benzene. These conversions can also be rationalized with aluminocarbocations as outlined in Scheme 1.

Although the new reactions of diazirines 2 and $\mathbf{4}$ provide no evidence for the intermediacy of diazirinium ions, they do afford unanticipated mechanistic insights into diazirine chemistry. ${ }^{4-9}$ We are extending our studies of Lewis acid-catalyzed diazirine decompositions to fluorodiazirines and additional catalysts.

Acknowledgment. We thank Professors K. Krogh-Jespersen and R. Sauers for helpful discussions and the Center for Computational Neuroscience at Rutgers University (Newark) for computational resources. We are grateful to the National Science Foundation for financial support.

JA002174M

(19) With $4(\mathrm{R}=\mathrm{Me}$ or Ph$)$ in Scheme 1 , one penultimately arrives at ROCHPh 2 . Attack of AlCl_{3} on an oxygen lone pair then initiates a final Friedel-Crafts reaction with benzene, affording $\mathrm{Ph}_{3} \mathrm{CH}$.
(20) Wlostowska, J.; Moss, R. A.; Guo, W.; Chang, M. J. Chem. Commun. 1982, 432. Moss, R. A.; Shen, S.; Hadel, L. M.; Kmiecik-Lawrynowicz, G.; Wlostowska, J.; Krogh-Jespersen, K. J. Am. Chem. Soc. 1987, 109, 4391.
(21) Schmitz, E. Chem. Ber. 1962, 95, 688. Smith, R. A. G.; Knowles, J. R. J. Chem. Soc., Perkin Trans. 2 1975, 687.
(22) Closs, G. L.; Moss, R. A. J. Am. Chem. Soc. 1964, 86, 4042.
(23) Barton, D. H. R.; Guziec, F. S., Jr.; Shahak, I. J. Chem. Soc., Perkin Trans. 1 1974, 1794.
(24) With $\mathrm{C}_{6} \mathrm{D}_{6}, \mathbf{1 3}$ gave $\left(\mathrm{C}_{6} \mathrm{D}_{5}\right)_{2} \mathrm{CHD}$ in $95-98 \%$ purity.
(25) The product mixture contained $77 \% \mathrm{Ph}_{3} \mathrm{CH}, 22 \% \mathrm{Ph}_{2} \mathrm{C}=\mathrm{CPh}_{2}$, and $1 \% \mathrm{Ph}_{2} \mathrm{CH}_{2}$. With substrate $\mathrm{C}_{6} \mathrm{D}_{6}$, the two major products were perdeuterated.

[^0]: (11) (a) All optimizations utilized Gaussian94 Revision E. 2 using default convergence criteria: Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrezewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; HeadGordon, M.; Gonzalez, C.; Pople, J. A. Gaussian, Inc.: Pittsburgh, PA, 1995. (b) DFT calculations used Becke's three-parameter hybrid method using the LYP correlation functional: Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
 (12) This step is supported by an intrinsic reaction coordinate calculation which connects the diazirine/ AlCl_{3} complex, TS1, and the diazoalkane/ AlCl_{3} complex. Note the rehybridization of N(1) in this process.
 (13) (a) Moss, R. A. Acc. Chem. Res. 1999, 32, 969. (b) Yan, S.; Sauers, R. R.; Moss, R. A. Org. Lett. 1999, 1, 1603 and references therein.

[^1]: (14) Computed E_{a} 's in a vacuum for the fragmentations of MeOCCl and PhOCCl are 33.2 and $32.7 \mathrm{kcal} / \mathrm{mol}$, respectively. ${ }^{13 \mathrm{~b}}$
 (15) About 8% of $\mathrm{Ph}_{2} \mathrm{CH}_{2}$ is also formed, but controls suggest that it comes from AlCl_{3}-mediated phenylation of benzene by $\mathrm{Ph}_{3} \mathrm{CH} .{ }^{16}$
 (16) Thomas, C. A. Anhydrous Aluminum Chloride in Organic Chemistry; Rheinhold, New York, 1941; p 721.
 (17) $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{CH}$ with AlCl_{3} and $\mathrm{C}_{6} \mathrm{D}_{6}$ yields $\left(\mathrm{C}_{6} \mathrm{D}_{5}\right)_{3} \mathrm{CH}$.
 (18) B3LYP/6-31G* calculations indicate that the reaction of PhCCl with AlCl_{3} gives 6 with $46.2 \mathrm{kcal} / \mathrm{mol}$ of exothermicity. Aluminocarbocation 6 is near-trigonal and planar at " C^{+}", with a computed charge of +0.39 on this carbon. MeOCCl and AlCl_{3} are computed to react analogously, with $\Delta E=$ $-32.8 \mathrm{kcal} / \mathrm{mol}$ and $\delta^{+}=+0.35$.

